
CROSSTALK The Journal of Defense Software Engineering 25April 1999

What Is So Great About
Simulation?
Simulation can be applied in many criti-
cal areas. It allows issues to be addressed
before they become problems. Simula-
tion is more than just a technology be-
cause it forces one to think in global
terms about system behavior and about
systems being more than the sum of
their components. Simulation can pro-
vide insight into the designs of processes,
architectures, or product lines before
significant time and cost have been in-
vested and can be of great benefit in
support of training. Simulation is being
increasingly emphasized in the Depart-
ment of Defense (DoD) community,
where there is documented evidence that
its impact on cost, quality, and schedule
is nontrivial. I believe that the software
engineering community needs to take a
stronger role in exploiting the technol-
ogy [1].

The DoD Emphasis on Simulation
The Office of the Secretary of Defense
has recently initiated an effort focused
on the use of modeling and simulation
to support improvement of the acquisi-
tion process. Jacques Gansler, under-
secretary of defense for acquisition and
technology, states, “A directive which I
issued this year [1998] requires the inte-

gration of modeling and simulation in
our acquisition process—across func-
tional disciplines—and throughout the
lifecycle of systems. We are committed
to reforming the acquisition system and
recognize that an essential tool for ac-
complishing that reform will be model-
ing and simulation.” [4] Although
Gansler does not explicitly include the
software acquisition process, there is no
reason to doubt that software acquisition
can benefit as much as any other DoD
acquisition area, as will be explained
further.

Gansler’s remarks are reinforced by
those of Patricia Sanders, director of
defense, test, system engineering, and
evaluation. In “Simulation-Based Acqui-
sition,” [5] she states that the DoD
needs to become a smart buyer and that
in evaluating what to buy, simulation
will be a key component. She says that,
“Without question, the Defense Depart-
ment is moving toward greater use of
simulation-based system acquisition.”
She indicates that,

“The Defense Department envi-
sions an acquisition process sup-
ported by the robust, collaborative
use of simulation technology that is
integrated across acquisition phases
and programs. The objectives of
Simulation-Based Acquisition
(SBA) are to:
1. Reduce the time, resources, and

risk associated with the acquisi-
tion process;

2. Increase the quality, military
utility, and supportability of
systems developed and fielded;
and

3. Enable integrated product and
process development from re-
quirements definition and initial
concept development through
testing, manufacturing, and
fielding.” [5]

Sanders provides evidence from com-
mercial and military programs to show
that the use of simulation has had major
positive impacts from the perspectives of
cost, schedule, and productivity. Follow-
ing are some of her examples.

“Cost – … In the Joint Strike
Fighter program, it is projected
that virtual manufacturing tech-
niques may save as much as 3
percent of the program’s estimated
lifecycle cost, which could be $5
billion.
Schedule – The use of modeling
and simulation tools and processes
by the “big three” auto manufac-
turers has reduced the time from
concept approval to production
from 5 to 3 years. …
Productivity – … It took 38
Sikorski draftsmen approximately
six months to develop working
drawings of the CH-53E Super
Stallion’s outside contours. In
contrast, using modeling and simu-
lation, one engineer was able to
accomplish the same task for the

Simulation: An Enabling Technology
 in Software Engineering

Alan M. Christie
Software Engineering Institute

This article suggests three reasons why the software engineering community could ex-
ploit simulation to a much greater advantage. First, the Office of the Secretary of
Defense has indicated that simulation will play a significant role in the acquisition of
defense-related systems to cut costs, improve reliability, and bring systems into opera-
tion more rapidly. Second, there are many areas where simulation can be applied to
support software development and acquisition. Such areas include requirements speci-
fication, process improvement, architecture trade-off analysis, and product-line prac-
tices. Third, commercial simulation technology, capable of supporting software devel-
opment needs, is now mature, easy to use, low cost, and readily available.

The Software Engineering Institute’s work is sup-
ported by the Department of Defense.
Capability Maturity Model, CMM, and CERT
are registered with the U.S. Patent and Trademark
Office.

26 CROSSTALK The Journal of Defense Software Engineering April 1999

Commanche helicopter in just one
month. …” [5]

Clearly, the use of simulation in the
above examples is different from that in
software development; however, there
are sufficient parallels that would tend to
indicate that similar advantages can be
accrued in the software arena. For ex-
ample, although physical mock-ups are
not used in software development, early
prototypes are used to the same advan-
tage, e.g., determining system character-
istics prior to large investments in imple-
mentation.

There are other common problems
shared between the physical systems and
software systems. Examples are
• The management of changing re-

quirements and predicting the conse-
quences of such changes.

• The development and optimization
of effective processes through which
the product is built.

• The estimation and tracking of
project costs and schedules.
In addition, in 1998, the DoD devel-

oped an overall action plan to integrate
the various simulation-based acquisition
activities ongoing at the DoD. This
action plan was developed by a joint
SBA task force whose aim is “an acquisi-
tion process in which the DoD and
industry are enabled by robust, collabo-
rative use of simulation technology that
is intended to integrate across acquisi-
tion phases and programs.” [6]

The Need for Simulation in
Software Engineering
Why can simulation enhance traditional
software engineering? An important
factor is that it provides insights into
complex process behavior. Like many
processes, software processes can contain
multiple feedback loops such as those
associated with correction of defects in
design or code. Delays that result from
these effects may range from minutes to
years. The complexity that results from
these effects and their interactions makes
it almost impossible for human (mental)
analysis to predict the consequences.
Unfortunately, traditional process analy-
sis does not shed much light on these
behavioral issues, and the usual way to

cess modifications. One person’s experi-
ence may not correspond to another’s,
and subjective judgment comes into play
as to whose opinion is correct. Usually,
the person with greater authority wins.
With the ability to quantify the effects
through simulation, a much greater
degree of insight and understanding can
be brought to bear on the decision-
making process. Therefore, simulation
can be a significant influence in commu-
nication and consensus building. In this
context, alternate process designs can be
considered in a quantitative manner
with respect to such issues as bottle-
necking, resource availability, through-
put, and costs. These analyses should
result in processes that, once installed,
will have a considerably higher probabil-
ity of satisfactory operation.

A Discrete Simulation Model
There are many approaches to simula-
tion. Some simulations are based on the
need to visualize the airflow across a
wing section, whereas others designed
for combat or flight training need a
virtual reality component. However, the
types of simulations presented here use
symbolic networks of linked elements
that model processes or products. For
example, it is possible to model entities
flowing through the departments of an
organization or model information flow-
ing between a set of integrated software
tools. Techniques such as discrete event
simulation and systems dynamics are
often used here.

To make concrete the type of simula-
tions to which I refer, Figures 1 and 2
show components of a discrete simula-
tion model (“discrete” because the enti-
ties that flow through the system are
modeled discretely). The model was
developed with the Extend tool [2] and
depicts a call-center type of process for a
computer security incident response
team (CSIRT). CSIRTs, such as the
CERT® Coordination Center at the
Software Engineering Institute (SEI),
support organizations that have been
compromised by unauthorized computer
intrusions or that wish to obtain infor-
mation about guarding against such
intrusions. CSIRTs have to communi-
cate with many victimized organizations,

resolve them is to run the process and
observe the consequences. This can be
an extremely costly way to perform
process improvement.

Assessing the Costs of Software
Development
At an applied level, simulation can sup-
port project costing, planning, tracking,
and prediction. In a competitive world,
accurate prediction provides a significant
advantage. If cost estimates are too high,
bids are lost; if too low, organizations
find themselves in debt. In this context,
simulation can provide not only esti-
mates of cost but also estimates of cost
uncertainty. Simulation is a powerful
tool to aid activity-based costing and can
incrementally accumulate costs to an
extremely fine degree of resolution. In
addition, it can assess the uncertainty of
costs based on the interacting uncertain-
ties of independent variables [7, 8].

Supporting Metric Collection
Simulation is effective only if both the
model and the data used to drive the
model accurately reflect the real world.
There is a tight connection between the
model and the data in the sense that a
simulation can only be executed if it is
supplied with numerical drivers, which
forces the developer to identify points in
the model where these drivers are
needed. For example, one set of data that
needs to be entered in the model may be
what percentage of design documents
pass review and what percentage must be
returned for further work. Thus, in the
construction of the model, points where
metric data must be collected fall out as
a bonus. This approach forces the collec-
tion of metric data in a consistent sense
from a systems perspective—it is not
merely “nice to have” data. Often, too
much or too little metric data is col-
lected because the analyst does not have
clear guidelines on what is essential.

Building Consensus and
Communication
When changes to a process are proposed,
experience is likely to be the most im-
portant influence. However, experience
may not be enough to correctly assess
behavioral changes resulting from pro-

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 27April 1999

Figure 1. Top-level view of a CSIRT process. This simulation models the flow of information through a
CSIRT. Triage handles all incoming new messages. Load balancing distributes new requests for help
among the incident-handling team. Incident resolution is the collective name for the team members
who resolve incidents. Information management provides responses to routine requests for information.

Figure 2. The load-balancing subprocess. The load-balancing activity attempts to assign incoming
incidents to the appropriate incident handlers, i.e., those with lower current loads or those with
expertise in the specific incident.

Leveraging Simulation Across
Applications
As illustrated in the next section, simula-
tion can support a wide variety of appli-
cations; therefore, the marginal invest-
ment in simulation tools, training, and
experience building diminishes as the
technology is introduced to successively
new applications.

Target Applications for
Simulation in Software
Engineering
Simulation has been applied in many
fields, such as aerospace and energy
production, but to date, it has not seen
broad practical application in software
engineering. This may be because it is
more difficult to accurately model hu-
man and organizational behavior than to
model physical systems, or it may be
that the emphasis on software process is
a relatively recent phenomenon. What-
ever the reason, it is unfortunate because
the rewards from its use are myriad. In
this section, I briefly review applications
of simulation (in no particular order)
and some of the benefits that can be
obtained.

Requirements Management
Simulation can be extremely helpful in
pinning down software system require-
ments early in the product lifecycle,
particularly when examining temporal
behavior. Simulation can mimic the
performance characteristics of software
components and their interactions, the
effects of time delays and feedbacks, and
of finite capacities and resource bottle-
necks [9, 10]. The CSIRT example in
Figure 1 illuminates these issues. Alter-
nate architectures and designs can

Combine All
Incoming
Messages.

Queue Up All
Incoming
Messages.

Perform Load-
Balancing
Activity.

Separate Out
Requests for
Information.

Allocate
Incidents to
Handlers.

Plot Number
of Incidents
Managed
by Each
Handler.

Simulation: An Enabling Technology in Software Engineering

and one incident may be composed of
numerous E-mail dialogs; hence, the
need for a formal work-flow process to
manage the large number of interactions
while making sure that efficiency and
responsiveness are maintained.

Figure 1 shows the top-level compo-
nent of the incident-handling model.1

New incidents are inserted into the
process at the left, where they queue up
to be handled by triage. In triage, E-mail
is assigned to either the load-balancing
function or to information management.
In load balancing, the incidents are
assigned to incident handlers based on
the incident handlers’ loads or their areas
of expertise. Subprocesses take care of
the details of the four activities identified
in Figure 1 (triage, load balancing,
incident resolution, and information
management), which are all modeled in
the simulation. Figure 2 illustrates the
subprocess for the load-balancing area.

Upon running the model, various
plots can be produced. In this example,
both the queue in front of Incident
Handler 3 (see Figure 3) and the num-
ber of completed E-mail completed for
each of the incident handlers are plot-
ted (see Figure 4).

Simulations such as this can be ex-
tremely useful for designing effective
processes and for predicting the re-
sources needed (both human and com-
puter) so that the anticipated loads can
be handled. This model contributed to
generating synthetic incident data that
supported performance tests on a
CSIRT work-flow environment. With-
out such data, SEI would not have been
able to assess performance at such an
early state of the work-flow system’s
development.

For more background on technical
issues associated with simulation model-
ing, consult [3].

28 CROSSTALK The Journal of Defense Software Engineering April 1999

be evaluated in a safe environment prior to implementation. In
addition, requirements are rarely static but evolve as experience
grows with product development. Thus, simulation is not only
a valuable tool in defining the initial requirements but also can
be used to test alternate modifications prior to their implemen-
tation. Finally, a system simulation can be viewed as a compo-
nent of the requirements and can provide quantitative mea-
sures against which the target software system must comply.

The processes through which the requirements are man-
aged also are critical. However, as far as modeling is concerned,
such processes have much in common with other project man-
agement processes, e.g., design, development, and test. Thus,
the discussion in the next section is relevant to requirements
management.

Project Management
Simulation can allow managers to make more accurate predic-
tions about both the schedule and the accumulated costs asso-
ciated with a project [11, 12]. This approach is inherently
more accurate than costing models based on fits to historical
data because it accounts for the dynamics of the specific pro-
cess. With regard to schedule, simulation can account for de-
pendencies between tasks, finite capacity resources, and delays
resulting from probable rework loops. Some simulation tools
also allow one to compute the accumulation of costs on an
activity-dependent basis. These features are useful for generat-
ing proposals that are more accurate in cost and schedule and
therefore more likely to keep a company in business.

Training
Because of the complex dependencies between attributes of
organizational systems, these systems can respond in counter-
intuitive ways. (The classic example is Brooke’s law, which
states that hiring people late in a project can further delay the
project.) Simulation can play an important role in sensitizing
managers to the consequences of instabilities that result from
the system feedbacks often inherent in badly designed organi-
zational processes. Simulation-based training also can provide

software development managers with the insights necessary to
establish effective processes and to operate these processes in a
stable manner. Thus, the focus is to train management in the
design and operation of software processes, not in the tech-
nologies that support software development.

Simulation-based training can be performed by individual
managers who interact with the simulated software develop-
ment activities. This person has control over certain control
parameters (such as hiring rate and salaries), and the decisions
made alter the course of the subsequent simulation history.
Analysis of a training session can be performed after the session
to see what went right and what went wrong in the decision-
making process and to reinforce effective decision making.

To bring groups of managers to a central location for train-
ing can be both costly and time consuming. In the near future,
such groups may be trained in a geographically distributed
manner using a simulator with displays on the managers’ local
terminals. Interaction between trainees (which allows for joint
decision making) can be provided through the use of collabo-
ration technology. With the increasing interest in this technol-
ogy, distributed training may soon become practical.

Process Improvement
Simulation can be used to support process improvement at all
levels of the Capability Maturity Model® (CMM) but particu-
larly at the higher levels [13,14,15]. Because simulation forces
one to address metrics and process behavior in a methodical
way (see “Supporting Metric Collection” section), one may
argue that simulation can accelerate the introduction of pro-
cess improvement. Consistent with the philosophy of the
CMM, simulation capability at each CMM level incrementally
builds on the simulation capabilities of the preceding levels
and matches the needs of the software engineering practices at
that level [16].

Traditionally, revised or new processes are improved
through operational experience. This can be expensive and
risky. Simulation can provide considerable insights into how a
process will work prior to its implementation. These insights

Figure 4. The cumulative number of E-mail messages addressed by each of
the incident handlers.

Figure 3. The E-mail queue for Incident Handler 3.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 29April 1999

can help the process designer assess alter-
natives and show that a specific process
design performs in a manner that meets
expectations. In this way, processes can
be pretested, and buy-in is more likely
obtained from management. Subjective
criticisms are less likely, since quantita-
tive simulation of validated models can
produce specific and credible answers to
perhaps hostile questions.

Architecture and Commercial-Off-
the-Shelf Integration
Building complex software systems usu-
ally begins with addressing the system’s
architecture. Without a firm notion of
how the major components of a software
system interact, there is little likelihood
that the system will reflect performance
effectively. One would like to know early
in the development cycle that such at-
tributes as reliability, reusability, main-
tainability, portability, performance, and
modifiability are above some acceptable
level. There are complex dependencies
between these attributes. For example, in
improving performance, reusability
might be sacrificed; or in improving
portability, maintainability might re-
quire increased effort. Making trade-offs
in this multidimensional space is not
easy, but if they are not made at a high
level of design abstraction, there is little
chance they can be dealt with once cod-
ing begins. Simulation is a tool that can
be used to examine some of these archi-
tectural trade-off issues [17]. Simulation
can provide early insights into timing,
resource usage, bottlenecking, and us-
ability. In addition, one can rapidly gain
insight into the implications of design
changes by running simulations with
varying independent parameters. Finally,
one can assess sensitivities to parameter
changes in a Monte Carlo (statistical)
sense.

Product-Line Practices
Simulation makes considerable sense in
the economic analysis of product lines.
In particular,

“Because product-line development
involves changes in product com-
position and production, software
size measures, such as lines of code,

The subject of simulation-supported
acquisition has been addressed in some
detail by Walt Schacci and Barry
Boehm [19, 20]. In their articles, they
address the issues of how simulation
can support the acquisition lifecycle.
They give specific examples of potential
applications and suggest that a research
and development effort be established
to explore issues such as virtual proto-
typing, incremental iterative acquisition
supported by simulation, and the use of
wide-area collaboratories.

Every Silver Lining Has a Cloud
As a cautionary note, it is well to re-
member that simulation is not a pana-
cea. The predictive power of simulation
is strongly dependent on how well the
models are validated. Although many
scientific and engineering fields can base
their models on established physical law,
organizational models have to deal with
human and other less quantifiable issues.
Not only is gathering data difficult when
that data must come from human actors,
the reproducibility of scenarios used to
validate models cannot as easily be stan-
dardized as in experiments based on
physical law.

Simulation is a simplification of the
real world and is thus inherently an
approximation. As indicated by S.
Robertson,

“It is not possible that a model is
absolutely correct. Therefore,
model [verification and validation]
is concerned with creating enough
confidence in a model for its results
to be accepted. This is done by
trying to prove that the model is
incorrect. The more tests that are
performed in which it cannot be
proved that the model is incorrect,
the more confidence in the model
is increased.” [21]

However, the usual alternative to simula-
tion is to rely on human intuition,
which Massimo Piattelli-Palmarini warns
is often biased by “‘mental blindspots’ or
‘mental tunnels’ where we systematically
make grave errors and get sidetracked
into the wrong answer in certain kinds
of problems.” [22]

are not good predictors of produc-
tivity improvements. To estimate,
track, and compare total costs of
disparate assets, adaptation of other
cost modeling techniques, particu-
larly activity-based costing to asset-
based software production, is
needed.” [18]

Some simulation tools incorporate activ-
ity-based costing such that, as entities
flow through the simulated process, the
cost associated with the processing of
each entity at each stage can be accumu-
lated. In this way, detailed cost predic-
tions can be made with respect to differ-
ent product-line strategies.

Risk Management
Projects are often vulnerable to risks
resulting from things like requirements
ratcheting, changing staff levels, funding
cuts, and organizational disruptions.
Simulation can help identify associated
project risks early. By quantitatively
predicting the consequences of alternate
decisions, simulation can help design
more objective, less risk-prone strategies.
There also are risks associated with alter-
nate system architectures or commercial-
off-the-shelf integration strategies. By
using simulation to examine the poten-
tially complex interactions of alternate
component configurations, the pros and
cons of different design decisions can be
identified.

Acquisition Management
Acquisition management is likely to be
dependent on many of the practices
described above, e.g., requirements man-
agement, project management, and risk
management. Because all these practices
can benefit from the use of simulation,
acquisition management can, too. Spe-
cifically, simulation can help validate a
contractor’s estimates of costs and sched-
ules and provide insight into the ability
of the contractor’s design to meet system
requirements. Therefore, through the use
of simulation, a project manager can
predict potential contractor problems
before they become reality. Simulation
also has the effect of keeping the con-
tractor honest in estimates of cost and
schedule.

Simulation: An Enabling Technology in Software Engineering

30 CROSSTALK The Journal of Defense Software Engineering April 1999

The State of Simulation
Technology
Less than a decade ago, one could only
develop a simulation by textual coding
of the model. However, since the early
1990s, graphical simulation tools have
become available. These tools
• Allow rapid model development by

using, for example,
• Drag-and-drop iconic building

blocks.
• Graphical element linking.
• Syntactic constraints on how

elements are linked.
• Are less error prone.
• Require significantly less training.
• Are easier to understand, reason

about, and communicate to nontech-
nical staff.
Because of these features, network-

based simulation tools allow one to
develop large, detailed models rapidly.
The focus thus becomes less on the
construction of syntactically correct
models and more on the models’ seman-
tic validity and the accuracy of their
numerical drivers.

The simulation tools in today’s
marketplace are robust and reasonably
inexpensive. Most tools cost in the
range of $500 to $1,000. They there-
fore are accessible by organizations that
wish to explore the applications de-
scribed above. ◆

Acknowledgments
I thank Jim Withey, Bill Riddle, An-
thony Earl, and Caroline Graettinger for
their review of this article.

About the Author
Alan M. Christie is a
senior member of the
technical staff at the
Software Engineering
Institute. He actively
promotes the application
of process, collaboration,

and simulation technologies to make
software development more effective. He
has extensive experience with process
automation and barriers to its adoption.

He published Software Process Automation:
The Technology and Its Adoption (Springer-
Verlag, 1995). He recently managed the
implementation of a collaborative process
support environment to meet the needs of
computer security incident response
teams. He also actively promotes simula-
tion as an important element to under-
standing process behavior and to support-
ing process improvement. He has a
master’s degree in computer science and
holds a doctorate in nuclear engineering.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Voice: 412-268-6324
Fax: 412-268-5758
E-mail: amc@sei.cmu.edu

References
1. Kirby, K. and R. Sawhney, “Simulation:

Shifting the Competitive Edge for the
Next Generation,” MDC Update, Uni-
versity of Tennessee, Vol. 6, 1997.

2. http://www.imaginethatinc.com
3. http://www.pitt.edu/~wjyst/

whatissim.html
4. http://www.acq.osd.mil/ousda/

speech/modeling.html
5. http://www.acq.osd.mil/te/speeches/

sanders/simbasedacq.htm
6. http://www.msosa.dmso.mil/sia-sba/

sba_sia_documents.asp
7. Summary of CAPI-Developed Simula-

tions for the U.S. Postal Service, http://
idt.net/~capi99/usps.htm

8. Gardner, L.L., M.E. Grant, and L.J.
Rolston, “Using Simulation to Bench-
mark Traditional vs. Activity-Based
Costing in Product Mix Decisions,”
WSC ’94: Proceedings of the 1994 Con-
ference on Winter Simulation, pp. 1050-
1057.

9. Belscher, R., “Evaluation of Real-Time
Requirements by Simulation-Based
Analysis,” First IEEE International Con-
ference on Engineering of Complex Com-
puter Systems, IEEE Computer Society
Press, Los Alamitos, Calif., November
1995.

10. Lerch, F., et al., “Using Simulation-Based
Experiments for Software Requirements
Engineering,” N. Mead, ed., Annals of
Software Engineering, Vol. 3, 1997.

11. Kellner, M.I., “Software Process Model-
ing Support for Management Planning
and Control,” First International Confer-
ence on the Software Process, Redondo
Beach, Calif., 1991, pp. 8-28.

12. Abdel-Hamid, T. and S.E. Madnick,
Software Project Dynamics, Prentice-Hall,
Englewood Cliffs, N.J., 1991.

13. Raffo, D.M. and M.I. Kellner, “Using
Quantitive Process Modeling to Forecast
the Impact of Potential Process Improve-
ments,” Proceedings of the 10th Interna-
tional Forum on COCOMO and Software
Cost Modeling, Pittsburgh, Pa., October
1995.

14. Hansen, G.A., “Simulating Software
Development Processes,” IEEE Com-
puter, January 1996.

15. Tvedt, J.D. and J.S. Collofello, “Evaluat-
ing the Effectiveness of Process Improve-
ments on Software Development Cycle
Time via System Dynamics Modeling,”
Proceedings of the 19th Annual Interna-
tional Computer Software and Applications
Conference, 1995.

16. Christie, A. M., “Simulation in Support
of CMM-Based Process Improvement,”
Journal of Systems and Software (forth-
coming).

17. http://www.sei.cmu.edu/publications/
documents/97.reports/97tr029/
97tr029chap03.htm

18. http://www.sei.cmu.edu/plp/
modeling_costs.html

19. http://sunset.usc.edu/SAMSA
20. Schacci, Walt and Barry Boehm, “Vir-

tual Systems Acquisition: Approach and
Transitions,” Acquisition Review Quar-
terly, Vol. 5, No. 2, spring 1998.

21. Robertson, S., “Simulation Model Verifi-
cation and Validation: Increase the Users’
Confidence,” Proceedings of the 1997
Winter Simulation Conference, pp. 53-59.

22. Piattelli-Palmarini, Massimo, Inevitable
Illusions: How Mistakes of Reason Rule
Our Minds, John Wiley, 1994. Also
http://public.logica.com/~stepneys/
bib/nf/piattell.htm

Note
1. In these diagrams, double lines represent

the flow of things, and the single lines
represent the flow of numerical data.

Software Engineering Technology

